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FOREWORD

Density estimation plays a central role in probabilistic pattern recognition and signal pro-
cessing. As data sets get larger, the cost of identifying a definitive class with each observation can
become prohibitive. Instead, it becomes important to develop ways to process the data in ways
that make use of all available information.
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INTRODUCTION

Finite mixture models have proven to be quite flexible as parametric probability density
function estimators. 12 Recently an adaptive mixture model was presented whose complexity or
number of terms is determined in a data driven manner.> This approach has made possible the use
of mixture models within a semiparametric setting, and thus of much more general applicability/
utility than was possible under rigid parametric assumptions.

This semiparametric use of mixture models has resulted in efforts to develop alternative
adaptive mixture model algorithms.*> Recent applications of semiparametric mixture model den-
sity estimation can be found in References 6 through 11. Thus, in addition to the traditional para-
metric uses of mixture models, the semiparametric application of mixture models is now well

established.

One of the problems that arises in many applications of mixture models to density estima-
tion of large scale data sets is that, as the size of the data set increases, the class labeled data
becomes a (small) subset of the total data set; that is, while many small data sets may have all the
observations labeled as to class membership, large data sets often consist of labeled subsets plus a
potentially large unlabeled subset.

The reason for this can be illustrated with an image processing example. Suppose that fea-
tures are to be computed for each pixel for a number of images and that densities are to be com-
puted for each class. Depending on the problem, the classes may correspond to vehicles,
buildings, woods, and open terrain, or to tumorous and nontumorous tissue. If all the available
data is to be used, the work in allocating each original pixel to one of the classes can easily
become prohibitive. The more usual case is that only a representative subset of training data are
class labeled with the balance either uncategorized or partially categorized. An example of the lat-
ter case is that it may be easy to say that there are no vehicles in this image, no buildings in that
one, and so on but very difficult or time consuming to identify each pixel corresponding to each
class in each image. It is often the case in medical imagery that ground truth cannot be established
definitively without a biopsy, again leading to less than full categorization of the observations.

Thus it is desirable to have a unified framework for handling this combined supervised
(class labeled data)/unsupervised (unlabeled data) problem. This was the motivation behind the
development of joint representation mixture models.!? When dealing with large data sets, by
which we mean 100,000 observations or more, the iterative expectation-maximization (E-M)
equations often become impractical. One method of dealing with this much data is to go to recur-
sive formulations of the E-M equations. This approach also makes possible the implementation of
the adaptive mixure model approach.? The derivation of the recursive E-M equations for joint
representation mixture models is the focus of this report.
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JOINT REPRESENTATION MIXTURE MODELS

FINITE MIXTURE MODELS

Given a probability density function that can be represented as a finite (g term) mixture
model

8

pxly) = Y nf(x:8), (1)

i=1

where f(#|0) denotes a generic member of the chosen parametric family, the likelihood function
for n observations is given by

n g
L) = [T X mf(x:0) - )

j=1li=1

The vector 6; represents the parameter set for the ith mixture component while y represents the
combined total parameter set including the mixing coefficients x;. The log-likelihood function is

n 8
InL(y) = ZInl:an(xj;Oi)]. (3)

j=1 Li=1

The maximum likelihood update equations can be obtained by taking derivatives of the log-likeli-
hood function with respect to the mixture model parameters, setting the resulting expressions
equal to zero, and solving for the parameters.

JOINT REPRESENTATION MIXTURE MODELS
Consider the Joint Representation Mixture Model defined by

M

g g M
p(x]y) = Y p(termi)p (x|term i) Y p(class m|term i) = Y mf(x:0,) > L, @

i=1 m=1 i=1 m=1

where {, = p(class m|term i) is an intra-term class mixing coefficient that gives the relative
proportion of the ith term associated with the mth class with the constraint

M M
Y G = O, p(classm|termi) = 1. 5)
m=1 m=1



NSWCDD/TR-95/122

This constraint merely says that for each term independently, the class mixing coefficients must
sum to one, or equivalently, that an observation from term i must belong to one of the M classes
with probability one.

The mixture model defined in Equations (4) and (5) represents a significant departure from
traditional mixture model usage. Historically a single mixture model has been used for either per-
forming unsupervised clustering or to generate a probability density function for observations
from a single class. If observations from multiple classes are to be dealt with, then a separate mix-
ture model is developed for data from each class. This latter approach leaves open the question of
how to incorporate partially (class) categorized or uncategorized observations when there are sep-
arate mixture models for each class. As will be seen, the joint representation formulation leads to
a unified treatment of these cases.

JOINT REPRESENTATION MIXTURE MODEL LIKELIHOOD FUNCTIONS

The likelihood function for class categorized data is

n, M
Zjm
L. (v) = IT IT {1p (x| (y N Class m)) 17}
j=lm=1
6
VR . 6)
=I111 [ 2 G (xj;ei):l :
j=lm=1 i=1
Here, Zjm is a binary valued class indicator function. For observation Jj from class A, Zp= 1 and Zjm
=0 for m # h. It thus can be considered as a picking function. It is used to pick out the desired con-
tribution to the likelihood function. For each term in the product where it has the value zero, the
contribution to the product is one so that the likelihood is unaffected. The log-likelihood function
for class categorized data can be written

n M 8 Zjm
InL (y) = 2 2 ln{[zgimnif(xj;ei)] }
i=1

Jj=1lm=1

n. M g
z ijln{ z Cim7tx‘f(xj;ei)} (7
j=lm=1 i=1

n, g M

23 Y 2L, [rf (2091

j=1 i=1m=1

To write down the likelihood for partially (class) categorized data, first consider the likeli-
hood appropriate for the case where the data is both class and term categorized. In this case, the
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likelihood is

L,(y) = 1‘[ H H{[C,mnf( 50017

j=lm=1i=1

Where as before, z;, (z;;)is a binary valued class (term) indicator function. For observation j

®)

from class h, zj, = 1 and zj,,= 0 for m # h, while for observation j from term k, zj; = 1 and z;;= 0 for

ik

In the absence of complete knowledge of z;,, and/or z;; the usual procedure is to use

expected values for either/both as

E (ij) = éjm
and

E(z) = T,

Then for partially (class) categorized data, the likelihood is

n, g M é 7
L,(w) = [TTI IT {1G,msf(x;8917" "

j=li=lm=1
whence

p

g M
InL,(y) =Y 2 2 imTiiin (G (2381

j=li=

0

g M E 2
= Y Y Y n{I[g,nf(x8)] iy
j=li=1lm=1

where éjm is a prior or expected probability of class membership with

M
Y [g,] =
m=1

and

nf(x 0,)
Z mf(x;:6,)

i=1

€

(10)

(11

(12)

(13)

(14)

is the expectation (posterior probability) that the jth observation came from the ith mixture term.
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Since this is an expectation, it will be held fixed while taking derivatives. Two common methods
for specifying partial categorization are (1) to give prior probabilities for each class for observa-
tion j, or (2) to specify that the priors are zero for some subset of the classes and to use posterior

probabilities across the remaining possible classes for the unknown Eim-

For uncategorized data,

n, g M n, g
Lw =1]] [2 > Cimnif(xj;ei)jl =[x [mf (%81,

j=1li=1m=1 j=li=1

n, g M n, g
InL,(y) = Y inYy ¥ L,mf(x:6) = Y imy [mf(x;8)1.
ji=1 i=1

ji=1 i=lm=1

For combined categorized/partially categorized/uncategorized data,

InL(y) = InL (y) +InL, (y) +inL, (V)

or

n. g M
InL(y) = ¥ Iny 3 7,0, [nf(x:86)]
Jj=1 i=1m=1

n, 4 4

M nu
+ 2 2 2 ﬁjmtijln [Cimnf(xj;ei)] + 2 In Z nf(x;8,) .
j=lm=1i=1

Jj=1 i=1

(15)

(16)

(17)

(18)

Historically with mixture models, reference to categorization of data has been with respect
to which term of the mixture model the observation is associated. While this is logical when each
term is ascribed a class status as in clustering, in this work, a completely different definition of

categorized data is being used. In this case, the concern is that of categorizing data only with

respect to class membership rather than with respect to individual mixture model terms.

To derive the maximum likelihood update equations, the parameter values that give a

maximum of the log-likelihood function must be found. This can be accomplished by taking the
derivative with respect to each parameter, setting it equal to zero, and solving the resultant system

of equations for the parameters. This has been done previously!? so that those results will be

taken as the starting point in developing the recursive versions here.
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MAXIMUM LIKELIHOOD E-M EQUATIONS

The joint representation E-M equations arel?

Cim = | P [2 Tim+ 2 gjmri')j:l ; (19)
; .

n, n, n,
c u
i ‘(T“T—)[Z Xt T;—;} 20)
J

n,

PALEAR i (o] + i (]

w, = =4 =] =l : 1)

202 6 3 )

j=1 ji=1

n, n, n,
2 2 2
PR C A DR WA TR R YA C AT
i=1

i=1 ji=1

. =

124 n, n, n,
PR EAS X1

j=1 j=1 j=1

: (22)

where

z.. C. f(x.0.)
Tijm - jmctm }f j2Ui ’ (23)

g M
Z Z ijcimnif(xj;ei)

i=lm=1

and

M
' f(x:36,
c Cimjﬂif(xj;ei) - lzjmcimntf(xj l)

M
Ty = D Ty = = -2 : 24)

8 g M
mel 2 Cimjnif(xj;ei) 2 z zjmgimn;f(xj;ei)
=1lm=1

i=1 i
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Similarly
o T (0)
TZ' - Tij - T——, (25)

2 nf(xj;ei)

i=1

where it is to be remembered that rp is only computed when x;j is a partially categorized observa-
tion and similarly for 'c

The E-M algorithm then consists of iterating the expectation step consisting of evaluating
Equations (23), (24), and (25) for the appropriate observations and the maximization step, which
consists of evaluating new parameter values using Equations (19) through (22).

The multivariate versions can be obtained by making xj and ; vector quantities and Z; a
matrix. The equations for y; and Z; become

.:2[1111 +2[ljf] Z[Tk]

i = = =1 (26)
PGS TR el
p-
and
H 5w a3 (et ) ) ot (i)
z = — L= . . =1 , (27

DTS EAS 21
J

i=1 j=1 j=1
where the component indices are denoted by superscripts.
Finally, once the joint representation mixture model has been obtained based on any com-

bination of class categorized, partial class categorized, and uncategorized data, if desired the
probability density function for an individual class can be obtained through
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8
2 Gy Tf (x:8)
p (x|Class y, y) = L= : (28)

4
2 Sy
i=1

This gives a properly normalized mixture model density estimate for an individual class.

These results serve as the starting point for the derivation of the recursive update equa-
tions.

DERIVATION OF RECURSIVE UPDATE EQUATIONS FOR JOINT REPRESENTATION
MODEL

Recursive Update Equation for {

. (n.+1,n,) c s . .. .
Consider first §; ", which implies that the latest observation is class categorized. In
terms of the E-M expression,

rn.+1 n, T
(n.+1,n) 2Tijm+zgjmrfj
¢ ’ _ j=1 =1
Cim T n +1 . n, (29)
c
PIRAEID I
L j=1 j=1 J

or, equivalently -

_ n, n, -
(n+1n) {Ti(nc-rl)m} + zTijm+ 2 éjmTZ'
e =1 =1
z;im "= Inc ,:p . (30)
c c
Tt 2 Tt 2T
L j=1 j=1 -

The right-hand side of this equation can be broken into two terms, corresponding to the last obser-
vation and all previous observations, respectively.
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where the second term is given by

This can be rewritten as

<

T. = ji=1 j—l

2 ljm+ zgjm ij

+ T2

j=1

z(n+1)+21: +Z

j=1 A

n, . .
2 l]m+ 2 E“]m l] 2 Tl]+ 2
j=1 ]-l 1—1

1(n+1)+21: +2 Z%*z

j=1 -j—l j=1

which, with a minor rearrangement of terms, becomes

F nc 'lp =
. T;j + TZ Z TVijm * Z éJm ij
T2 = j=1 nc] =1 j= 1
Tf(n+1)+ztu+zrp 2111"'2
- j= j=1 dL j=1 |
The last term in brackets on the right-hand side is just { ;:" i , S0 that

c
Titn,+1)

[t

nc np
c C
Titn,+1) 2 TR Z Tf

j=1 Jj=1

(31

32)

(33)

(34)

(35)
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Then
T TC C(nci ﬂp)
(n.+1,n) (nom)  ti(n o+ 1)m” i(n +1) " Sim
Cim = cim + (36)
t(n st Z’cu'l' Z
j=1
Using the identity
M
C
Lin+)ym = T+ ym” > TG+ ymt = Zmsym Tign,+1)
m=1
the final expression can be written as
T [z C(nc’np)]
(n.+1,n,) (ng,n,) i(n,+1)  [“(n+1)ym™ Sim
Cim =G, + " " . (37)
c c
i+t Ztij'*' er
j=1 j=1
Similarly, for a partially categorized observation,
n, n, +1 . B n, n, "
2 ljm+ z E-’jm ij gnl,+1,m1:tP,rzp+l+ Ztijm+ zéjmTZ
C(ﬂc,nl,+1) _ J=1 ji=1 _ j—l j—l (38)
im - n,+1 -
ZTU+ 2 ij z,n +1+ZTU"‘Z
L j=1 j=1 - L j=1 .
or, as before
(n,n,+1) én +lmti,n +1
Sm = +T, (39)
l n, +1 + 2 T + 2
j=1 j=1 -

10



with

NSWCDD/TR-95/122

Z szm + z g_]”l ij

1=1

t,n +1+ ZTU.*- 2

Jj=1 j=1

Proceeding as before in the completely categorized case,

or, equivalently,

-

n

c -
F e c n,
RIS KR RANEEANES 270
= 1_1 j=1 j=1
n. np
c
wn+2%+2 IS
1—1 - ]=1 ]=1
F n, 7]
(”c:”p) Tan+1 in +1+j;11,1 §1
T2=Cim

This is readily seen to be

T, =™ |1

im

n, n,
Unat RGEEG
j=1

Jj=1
Tan-i-l
n, n, ’
c
TZn,+1+ 2t 2T
j=1 Jj=1

which leads to the final result for a partially categorized observation

11

(40)

(41)

(42)

(43)
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Z;’lm = C-’im
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T 1 (ng,n,)
l,n':p+ n, [gjm_ Cir:c " ] :
Tznp+1+ Yo+ 2T

j:] J=1 J

Recall that no update takes place for an uncategorized observation.

Recursive Update Equation for &t

. (n.+1,n,n)
Consider first 7t; * P

In terms of the E-M expression,

(n.+1,n,n) _

i

or, equivalently

-

(n +1, n, n,)

rn,+ 1 n,

nu
Yt Xt X

j=1 j=1 j=1
(n.+1) +n,+n,

n, n, n,
T:(n£+1) + YTt ZTZ*' ZTZ

j=1_ j=1__ j=1

(n,+1) +n,+n,

(44)

, which implies that the latest observation is class categorized.

(45)

(46)

The right-hand side of this equation can be broken into two terms, corresponding to the last obser-
vation and all previous observations, respectively.

(4

(n+1Lnym) Ti(n,+1)

r n, n, n,
DI IIEDIH

i=1 i=1 ji=1

; =
(n,+1) +n,+n,

This can be rewritten as

(n,+1) +n,+n,

12

(47)
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c

(no+ Lmym) Titn, +1) +[ n.tn,+n, }t(n,, ny 1) 48)
: (n.+1) +n,+n, (nc+1)+np+nu :
which becomes
(n +1, n,n,) (n.n - ) 1 [ c (n,, n, nu)]
. =T, + 1. N . 49)
i i (n,+n,+n) +1L7 0+
Consider next 1t @t ) , which implies that the latest observation is partially class
categorized. In terms of the E-M expression,
n,+1 y
Z T, + 2 T+ z T,
.(nc,np+1,n,,) - |i=1 j=1 j=1 (50)
t nc+(np+1)+nu
or, equivalently
F n‘, np nu T
C u
T‘f(n,,+1) DI EAT W
(remy ) 61
t nc+(np+1)+nu
_ i
This readily becomes
- (n,n,+1,n) _ T?(n,, +1) [ n.+ np tn, :l (n,ny,n,) (52)
! nc+(np+1)+nu nc+(np+1)+nu !
which can be rewritten as
(n,n,+1,n) _ (n,n,n) 1 I: (nc, s 1, ):I
J C (n.+n,+n)+1L% 0+ ' (53)

For uncategorized observations, it is easy to show that the correct expression is

13
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n(nc, np’ n,+ 1) _ Tc(nc, np, nu) + 1 [ u (nc’ np’ nu)] ) (54)

. =T T. —-T.
i i (”c'*'”p"'”u) +1 i(n,+1) i

Recursive Update Equation for p

(n.+1, np,n)

Consider first p, , which implies that the latest observation is class categorized.

In terms of the E-M expression,

rn.+1
1 I:TU J] Z |: ij }:l + 2 [TU J:l
i(nc+ ,np’nu) - ey ]—l Z"l (55)
A +Z + 31
L j=1 j=1 j=1 o

or, equivalently

_ n, -
Tf(nc+1)xnc+1 + Z I:‘cu :|+ 2 |: ij ]] 2 [sz _]]
(n.+1,n,n,) _ =1 =1 j=1 (56)
H; - n,+1 . L
> T +Z + T
B j=1 j=1 j=1 J

The right-hand side of this equation can be broken into two terms, corresponding to the last obser-
vation and all previous observations, respectively.

- n, -
(n+1,n,n) 1?( )%n 41 Z [Tu ] Z[u J] Z[Tu j]
i R n.+1 - ncnp - n, + = n.+1 J=1 {‘_1 (57)
SieSEeSe | SgrXeeye
j=1 j=1 j=1 L j=1 j=1 j=1 Jd°

This can be rewritten as

14
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[~ nc np nu
C u
IR 7 X Z"iﬁZTi‘)j*Z"U
(3 s pr Ty i(n+l) n+1

i=1 i—l j=1 (e mpmy)
i RS n, + n +1 n, B (38

2“2 + 2T ZHZ + 2T

j=1 j=1 j=1 Lj=1 j=1 j=1

which becomes

c
(n.+ l,np, n,) (n, n, n,) Ti (n +1) (nc,n n,)
Xn 417 .

i i n +1

LRSI

ji=1 =1

(39)

i

s, + 1, n,) . . . . . .
Consider next u , which implies that the latest observation is partially class catego-

rized. In terms of the E-M expression,

n+1 by

Z (a1 + 3 (%5 + 5[]

=1 =1
= ! = (60)

i n,+1

PR EA

(non,+1,n,)

or, equivalently

( -
(nyn +1,n) l(n+l)+2[T’1 J:I Z[lj J] 2[1:1] :l

0 - B e G

ZHZ + 3T

L ]-1 _]:1 .

this readily becomes

15
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n,
( +1,n,) 171'7( 1 Z (nnyn,)
nc’np ny ln+ ‘= ‘ ] o Tp Ty
i = n,+ I + n, n,+1 n, H; ’ (62)
u
Z Tt 2 Z Tj 2 Tt 2T
J =1 ] =1 ] =1 = =1 j: 1 .
which becomes
&
(n,n,+1,n,) (n,n, n,) i(n,+1) (n,n,n,)
W = + PR . [xi(np+1)_l'Li ] (63)
U
2 Tyt Z * 2
j=1 j=1 j=1
For uncategorized observations it is easy to show that the correct expression is
Tu
(nc: n,n, +1) _ (n,_-, n, n“) i (nu + 1) (nc9 n, nu)
i =l 5 n n,+1 [xi(nu+1) —K; ] (64)
(4 u
2. Ty ZTZ"' pIR
j=1 j=1 j=1
Recursive Update Equation for ¥
(n.+1,n, c oy . ) .. .
Consider first X, , which implies that the latest observation is class categorized.
The E-M expression is
(n +1 n, N
2 u 2
PMLACENE . [ =1 ]+ 3 [ 05197
Z(nc'*‘l’np’nu) _ =1 j=1 i=1 65
ii - n +1 n, n, (65)
(o u
IR W
L j=1 j=1 j=1 |

or, equivalently

16
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C
z(nc+l,np,nu) _ Ti(n +1) (xn 1)
i T n 4t n,
u
> T T+ Z + 2T
j=1 j=1 Jj=1
. . (66)
2 u 2
2 [ (-1 ] + Z [ =m0 T+ 3 [ (-1 7]
+ i=1 i=1
n.+1 u
U
ZT+2 + T
L j=1 j=1 j=1 =
This can be rewritten as
[~ nc np n“ “
C u
(n+lnon) T?( 1)(x TR zTij'FZTfj*'zTij (non.n)
¢ » Tops T8y l’l+ k+ 1 _]--1 1_1 _]'—1 e Tpy Ty
zii = n +1 n, + n +1 Zii ’ (67)
u
21: +Z Zrij Z*c +z E’CU
J j=1 j=1 Lj=1 j=1 Jj=1
which becomes
T; 5 ()
(nc+ Ln :nu) ("c:n )n,,) l(ll + 1) Re np’ n
z, P =X, » +n+1 " [(n+1 u) ] (68)
u
ZT+Z Z%
j i=1
Similarly, for partially categorized and uncategorized data, respectively,
e
(n,n,+1,n,) (n,n,n,) i(n +1) (" n,n,)
Zii ’ =Zii ’ +n+1 n+p1 n, [(n+1 Fl) (69)
u
Z T+ Z qu-
j=1 j=1
and
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u

(o npm,+ 1) _ o (o mpm,) Ti(n,+1)

i 11

n, np
ARSI

RESULTS

SUMMARY OF UNIVARIATE ITERATIVE E-M UPDATE EQUATIONS

For completeness, the iterative E-M equations are reproduced first.

C-'im = 1 n I:zc Tijm + zp E-'ertpj:l ’
J

14

n, M

i=1 i =

ZZTijm+Zfi} ’
j=1

c
Li=1m=1

1 n, np n
c u
™ = W[ZWZTZ’f 1,,.],
p u i=1 j=1

J

gmjggﬂhgmj

[zm S [¢]+ zm]

j=1

2

ZTU(JC Il) + ZTP~(XJ-—H,-)2+ ZTZ-(xj—ng)Z

j=1 j=1

n,+1: l:(n+1 ll) -

i n, n,
PRASRAS 1
J

=1 j=1 j=1

where
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Tjm = — C””“*f iag (75)
z Z Cimnif(‘xj;ei)
and
M
M TCf(x.;G.) 2 m§~mn5f(xj,e )
= X T = - (76)
SO0 3 S 58,500
i=1 i=lm=1
Similarly
) 0.
Tfj = TZ- = _;tﬂi_l_)_, (77)
>, mf(x;36,)

i=1

where it is to be remembered that tp is only computed when xj 18 a partially categorized observa-
tion and similarly for ’c

The E-M algorithm then consists of iterating the expectation step consisting of evaluating
Equations (75), (76), and (77) for the appropriate observations and the maximization step, which
consists of evaluating new parameter values using Equations (71) through (74).

The multivariate versions can be obtained by making x; and W; vector quantities and ; a
matrix. The equations for u; and X; become

k
H; =

[r,, A1+ X [44) S [

L= =] (78)

[Jz (510 3 [4)+ 3 [4]]

=1 j=1 j=1

and
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where the component indices are denoted by superscripts.

SUMMARY OF UNIVARIATE RECURSIVE UPDATE EQUATIONS

Categorized Observation

TC z C(nc!np)
(n.+1,n) (nom,)  ti(n,+1) [ (n,+1)ym™ Sim ]
Cim T c'im T+ n, n, (80)
c c
T e * 2 Tt 2T
j=1 j=1
(n,+1,n,n,) (n,n,n,) 1 [ ¢ (ng, ny, nu):l
T, = 7. + , —TC. . (81)
1
i i (n,+n,+n,)+1 i(n.+1) 7
Tc
(n +1, n, n,) (n, n, n,) i(n,+1) (n,n,n)
i ’ - M + n +1 n, n, I:xnc'*l - l“Li ’ ] ’ (82)
c u
PIRAAD DI
j=1 j=1 j=1
T ( )
(nc+1’np’nu) - (nc’nlﬁn") i(?‘lc‘l-l) 2 RNy,
Zii - le + n_+ 1 ”’p (xnc+ 1~ u,) - Z” . (83)

nll
PIEADWADRS
j=1

ji=1 =1

For the multivariate case, Equations (82) and (83) become (with vector indices k and /)
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(4

k(n,+1,n,n,) k(n,n,n,) Tg(,, +1) [ k k(ng,n, nu):|
i =W +n +1 . xnc+1_u‘i ’
u
> Tyt 2 + 2Ty
j=1 j=1 j=1
ki(n +1, n, n,) 12) (n, n, n,)

i i

c

Ti(n +1) k K\ 1 ! Zk’("c,"p»"u)]'
+n +1 n, xnc+1—p‘i xnc+1_u'i T

PR AR

j=1

Partially Categorized Observation

(nm,+1) (n,n,) Tfn +1 [ (ne n,,)]
Cim = Cim + im~ i .
z,n +1 + z T + 2
j=1 j=
(nom,+Ln) — (n,nm,n) 1 [ _n(nc, n, n,,)]
] - i(n +1 i '
i : (n.+n,+n,) +1 (n, +1)
(n,n,+1,n) (n, n,n, Tf(n +1) (n, n, n,)
M; =W + n,+1 ; [xn +17 H ]
u
2 Tx] + 2 2 Tij
j=1 J Jj=1
(n,n,+1,n,) (n,n,n,) i(n,+1) 2 (n,n,n,)
Z; = + o+l n, (*, o1-H) X, ‘
u
2 TU + Z Z Tij
j=1 j=1 j=1

For the multivariate case, Equations (88) and (89) become (with vector indices k and [)
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k(nc,np+l,n“) k(nc,np,nu) Tf(n +1) [ k k("c,ﬂp, n,,):|
i = U, + n,+1 . xnp+l_u; ’
u
2 Tu + 2 + D Tij
j=1 j=1
kl(nc,np+1,nu) _ 2:kl(nc,np, n,)

i i

Tf(n +1) k ! ! kl(nc,np,nu)].
+ n,+1 n, n+1 l“‘z n+1_p’i _Zi
u
ZTU"' 2 Ztij

j=1 j=1

Uncategorized Observation

(n, n,n,+ 1) (n, n, n,) 1 u (n n, n,)
i =T +(n +n +n)+1L i+ '
c D u
u
(nc? np,n“"'l) _ (ncynly n“) + Ti(nu+l) _ (np np,'lu)
i - ui n, n, n,+1 Xn +1 i :
c u
Z"z‘j“P ZTZ"' > T
j=1 j=1 ji=1
u
s(etpmt ) o (npmyn) Ti(n,+1) 2 Z(nc» Ny 1)
ii = i + n, n,+1 (o1~ M) =2y
C u
DI WAL YA
j=1 j=1 j=1

For the multivariate case, Equations (88) and (89) become (with vector indices k and /)

u

k(n,n,n,+1) k(n,n,n,) T,'(n +1) k k(n,n,n,)
M, = H + n,+1 xnu+1_“'i ’
21 + Z DT T,
j=1 j=1
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ki(n,n,n,+1) _ Ekl (n,n,n,)
i -~

u

Ti(n,+1) k K\ 1 1 K@omn)] 96
+ n, n, n, +1 [(xn“+1~ui)(xn,,+1_ui)_zi ] =
(4 u
ztij"' ZTZ"" )y Tij
j=1 j=1 j=1
CONCLUSIONS

The derivation of the recursive E-M equations for joint representation mixture models
with normal components has been presented. While the detailed derivation was for the univariate
case, a slightly more complicated derivation results in the full multivariate equations. The results
for this case have been presented without derivation.

The joint representation approach represents a significant philosophical departure from
current mixture model usage. The standard mixture model usage is either to build a separate mix-
ture model for each class when the observations are class labeled, or to assume that each class is
normally distributed so that a mixture model for all the data can be interpreted as a mixture of nor-
mal classes. This approach, in effect, totally relaxes the requirement for each class to be normally
distributed. Philosophically, a semiparametric viewpoint has been taken in that it is assumed that
each class can be modelled by a (potentially complex) mixture model and that no significance is
to be ascribed to an individual term in the mixture. As an example, contrast a mixture model
approximation to a lognormal density to a mixture of two normals. In the latter case, it may well
make sense to care about which of the two terms gave rise to a particular observation. However, in
the lognormal case, where by assumption the density is nonparametric with respect to representa-
tion by normal mixtures, this sort of distinction has little or no meaning.

This approach is thus appropriate for combined supervised/unsupervised (various levels of
class categorization) learning when the individual class densities may be more complex than sim-
ple normals. It provides a unified framework for handling this problem. Once the joint representa-
tion density has been estimated, densities corresponding to the individual classes can be easily
recovered.

The recursive versions of these equations allow this approach to be used for large data sets
as well as in an adaptive mixture model framework.
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